Dynamic load balancing for petascale quantum Monte Carlo applications: The Alias method

نویسندگان

  • C. Devi Sudheer
  • S. Krishnan
  • Ashok Srinivasan
  • P. R. C. Kent
چکیده

Diffusion Monte Carlo is a highly accurate Quantum Monte Carlo method for the electronic structure of materials, but it requires frequent load balancing or population redistribution steps to maintain efficiency on parallel machines. This step can be a significant factor affecting performance, and will become more important as the number of processing elements increases. We propose a new dynamic load balancing algorithm, the Alias Method, and evaluate it theoretically and empirically. An important feature of the new algorithm is that the load can be perfectly balanced with each process receiving at most one message. It is also optimal in the maximum size of messages received by any process. We also optimize its implementation to reduce network contention, a process facilitated by the low messaging requirement of the algorithm: a simple renumbering of the MPI ranks based on proximity and a space filling curve significantly improves the MPI Allgather performance. Empirical results on the petaflop Cray XT Jaguar supercomputer at ORNL showing up to 30% improvement in performance on 120,000 cores. The load balancing algorithm may be straightforwardly implemented in existing codes. The algorithm may also be employed by any method with many near identical computational tasks that requires load balancing. Email addresses: [email protected] (C.D. Sudheer), [email protected] (S. Krishnan), [email protected] (A. Srinivasan), [email protected] (P. R. C. Kent) Preprint submitted to Computer Physics Communications August 20, 2012

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum monte carlo for large chemical systems: Implementing efficient strategies for petascale platforms and beyond

Various strategies to implement efficiently quantum Monte Carlo (QMC) simulations for large chemical systems are presented. These include: (i) the introduction of an efficient algorithm to calculate the computationally expensive Slater matrices. This novel scheme is based on the use of the highly localized character of atomic Gaussian basis functions (not the molecular orbitals as usually done)...

متن کامل

An Algorithm for Dynamic Load Balancing of Synchronous Monte Carlo Simulations on Multiprocessor Systems

We describe an algorithm for dynamic load balancing of geometrically parallelized synchronous Monte Carlo simulations of physical models. This algorithm is designed for a (heterogeneous) multiprocessor system of the MIMD type with distributed memory. The algorithm is based on a dynamic partitioning of the domain of the algorithm, taking into account the actual processor resources of the various...

متن کامل

Noncollective Communicator Creation in MPI

MPI communicators abstract communication operations across application modules, facilitating seamless composition of different libraries. In addition, communicators provide the ability to form groups of processes and establish multiple levels of parallelism. Traditionally, communicators have been collectively created in the context of the parent communicator. The recent thrust toward systems at...

متن کامل

Dynamic Load Balancing of Parallel Monte Carlo Transport Calculations

The performance of parallel Monte Carlo transport calculations which use both spatial and particle parallelism is increased by dynamically assigning processors to the most worked domains. Since he particle work load varies over the course of the simulation, this algorithm determines each cycle if dynamic load balancing would speed up the calculation. If load balancing is required, a small numbe...

متن کامل

Automatic Granularity Control for Load Balancing of Concurrent Particle Simulations

This paper demonstrates the use of automatic gran-ularity control as part of dynamic load balancing for irregular, particle-based simulations. Performance optimization techniques are considered in the context of a concurrent Direct Simulation Monte Carlo method used to study the rareeed gas ow inside three-dimensional plasma reactors. Several computational techniques are used to reduce the over...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer Physics Communications

دوره 184  شماره 

صفحات  -

تاریخ انتشار 2013